If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+8x=21
We move all terms to the left:
9x^2+8x-(21)=0
a = 9; b = 8; c = -21;
Δ = b2-4ac
Δ = 82-4·9·(-21)
Δ = 820
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{820}=\sqrt{4*205}=\sqrt{4}*\sqrt{205}=2\sqrt{205}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{205}}{2*9}=\frac{-8-2\sqrt{205}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{205}}{2*9}=\frac{-8+2\sqrt{205}}{18} $
| 12-4a=2a+2 | | 3w+-1=2 | | 99/3=z/5 | | 2p^2+7=12p | | 1+4a=5a+4 | | 76=1/2(x-30) | | 17-4a=6a+17 | | 6b-1=3b+5 | | -4.7y=16.45 | | (x+3)/(3x–4)=2/3 | | 1/4s=2 | | -3z-1=+22z-1 | | 14u-7u=21 | | -a-18=4a-33 | | 3+-2j=-3 | | 60-2x=0 | | 5(1x+6)+24=9 | | 8x-8-2x=-x+-50 | | 5d+9=44 | | 4(2x-4x)+2x-24=0 | | p–18=-29 | | 1=k3− 3 | | (y+7)^2+y^2=85 | | (x+13)(5x+30)=0 | | 5(4y)-y=60 | | 2p=8.6 | | 3(2x+1x)-11=7 | | 3y−6=12 | | 5x^2+7=67 | | 4x-8(x+1)=16 | | 7(1+4b)= | | 20=4p+8 |